
“Attention is All You Need”
EXPLORING TRANSFORMER MODELS
Koerner Gray-Buchta



A Brief History 
of Neural 

Computing
● Pitts and McCulloch

● Rosenblatt

● Minsky & the AI Winter

● Basic NNs and Deep Learning



Pitts & Mcculloch 1943
1. First mathematical model of a neuron

2. Theta is the binary threshold

3. Bertrand Russell and Walter Pitts

4. Inspired by Leibniz (“Mind as the 
universal computer”)

5. Ignored until use by John von 
Neumann and Norbert Wiener



The Perceptron 1958
1. Mechanical hardware implementation 

based on Pitts-Mcculloch neuron

2. Weights encoded in potentiometer 
positions driven by motors

3. Essentially a single-layer neural 
network

4. Used for binary classification, early 
computer vision



Minsky-Papert Backlash
1. “Perceptrons” written by Marvin 

Minsky at MIT in 1969

2. Proved that SLPs couldn’t solve 
certain simple problems (XOR, parity)

3. Led to temporary abandonment of 
neural computing for symbolic, 
rule-based approaches (leading to AI 
winter)



AI Winter (1970-2010)
1. Lighthouse Report, UK 1973, failure of machine translation: over-promising and 

under-delivering

2. Changes in DARPA funding - no undirected research

3. Academic squabbles over limited computational resources

4. “The Navy revealed the embryo of an electronic computer today that it expects will be able 
to walk, talk, see, write, reproduce itself and be conscious of its existence” - NYT 1958



Basic Neural Networks
Weights are calculated during training by defining an error/loss function.

Weights are given a random seed, then gradually nudged according to the magnitude of their contribution to 
the error (the partial derivative of the weight w/r/t the error)



Deep Learning Surges
1. Exponential increase in computing 

power (GPUs, TPUs)

2. Progress in developing new 
architectures/training methods, depth 
of hidden layers

3. Big companies with Big Data

4. CNNs and RNNs (image, seq2seq)

5. Robotics, NLP, Vision, Search



Problems with CNNs/RNNs
1. Vanishing or exploding gradient (float 

rounded to zero)

2. Difficulty managing long-term 
dependencies

3. LSTM is an improvement, but still 
suffers from exploding gradients

4. Sequential nature prevents 
parallelization



Enter Transformers!





ENCODER 
STRUCTURE

● Word-embeddings

● Positional encoding

● Self-attention





Problem:

A word is not a number. How do we represent it to a 
computer?

Naive Answer:

Assign each word a number.

Further problem:

This gives no information about a word’s meaning 
(semantics). Also, the numbers get too big 

Encoding Words



Insight: meaning is relational, rather than absolute (dictionary)

We need an encoding for a word that contains information about how 
it relates to other words.

“You shall know a word by the company it keeps!” 
- Cambridge Linguist John Firth, 1962



Solution: train a network where each word corresponds to a neuron in the input layer 
(10,000+ neurons/words in vocabulary)

Each neuron in the input layer is connected to every neuron in the hidden layer (300 neurons)

After training, the learned weights (all 300) connecting a word to the hidden layer is unique to 
that word and semantically meaningful

The (pre-trained) word embedding is thus a vector composed of those 300 weight values

Creating Word Embeddings



Allows for vector arithmetic in a (300+) dimension semantic space where words with similar 
meanings have similar vectors (and thus positions in that space)

Utility of Word Embeddings





RNNs (including LSTMs) process tokens (words) sequentially, maintaining positional 
information, but preventing parallelization

Transformers process each token (word) in a sequence in parallel, allowing for faster 
operations, but this means they lose positional information. To a transformer, the following two 
sentences would have the same representation:

“Who are you” (Question)
“Who you are” (Statement)

So: how can we encode positional information into each input word-embedding vector?

Positional Encoding



Naive Solution: One Hot Encoding

Only encodes absolute position - no relative position information



Better Solution: Trig Functions
Each dimension of the positional encoding 
corresponds to a sinusoid

The positional encoding vector and 
word-embedding vector are summed element-wise

Easy to pick up on by the model, may allow 
extrapolation





Attention mechanisms allow us to emphasize (“attend to”) certain data-points while 
de-emphasizing others (cognitive attention)

Words “pay attention” to other words

Attention



Query vector: represents the unique word we want to 
compute attention scores relative to
Key vector: identifies the other words in the sequence, the 
context
Value vector: represents the actual semantic information of 
the tokens from the key vectors 

Left side computes attention weights to be applied to the 
value vector

Scaling prevents explosion

Product faster than sum

Scaled Dot-Product Attention



Multi-head Attention

Each query vector captures a different aspect of the input 
sequence, so each head processes the entire input sequence 

Allows the model to “attend” to different parts of the input 
sequence, all in parallel



Three Uses of Attention
1. In the encoder section: “ 

Each position in the encoder 
can attend to all positions in 
the previous layer of the 
encoder.”

2. In the decoder: “. . . 
self-attention layers in the 
decoder allow each position in 
the decoder to attend to all 
positions in the decoder up to 
and including that position”

3. At the junction between 
encoder and decoder 
sections: “This allows every 
position in the decoder to 
attend over all positions in 
the input sequence”

1

3

2



Advantages of Attention
Three considerations:

1. What’s the total computational complexity per layer? Less complexity, more speed
2. How many operations can be parallelized? Parallelization increases speed
3. What’s the path length signals have to travel in the network? Shorter path lengths 

mean the model learns long-range dependencies better



CONCLUSION
● Takeaways

● Broader Applications

● Colab notebook



Takeaways
Why does maximizing parallelization and 
minimizing computational complexity matter?

Allows for training on larger datasets that it was 
infeasible to train sequential architectures on 
(Wikipedia, Common Crawl)

“For translation tasks, the Transformer can be 
trained significantly faster than architectures 
based on recurrent or convolutional layers. On both 
WMT 2014 English-to-German and WMT 2014 
English-to-French translation tasks, we achieve a 
new state of the art. In the former task our best 
model outperforms even all previously reported 
ensembles.”



Broader Applications of Transformers
“Our survey encompasses 
the identification of the top 
five application domains for 
transformer-based models, 
namely: NLP, Computer 
Vision, Multi-Modality, 
Audio and Speech 
Processing, and Signal 
Processing.” - ‘A Comprehensive 
Survey on Applications of 
Transformers for Deep Learning 
Tasks’, Islam et al., June 2023



You can play 
around with a 
Transformer too!
00-langchain-intro.ipynb - Colaboratory

https://colab.research.google.com/github/pinecone-io/examples/blob/master/generation/langchain/handbook/00-langchain-intro.ipynb#scrollTo=l7yubiSJhIfs

