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Pitts & Mcculloch 1943

1. First mathematical model of a neuron
2. Theta is the binary threshold
3. Bertrand Russell and Walter Pitts

4. Inspired by Leibniz (“Mind as the
universal computer”)

5. Ignored until use by John von
Neumann and Norbert Wiener




The Perceptron 1958

1. Mechanical hardware implementation
based on Pitts-Mcculloch neuron

2. Weights encoded in potentiometer
positions driven by motors

3. Essentially a single-layer neural
network

4. Used for binary classification, early
computer vision



Minsky-Papert Backlash

1.

“Perceptrons” written by Marvin
Minsky at MIT in 1969

Proved that SLPs couldn’t solve
certain simple problems (XOR, parity)

Led to temporary abandonment of
neural computing for symbolic,
rule-based approaches (leading to Al
winter)

Expanded Edition

Perceptrons

Marvin L. Minsky
Seymour A. Papert




AT Winter (1970-2010)

1.

Lighthouse Report, UK 1973, failure of machine translation: over-promising and
under-delivering

Changes in DARPA funding - no undirected research
Academic squabbles over limited computational resources

“The Navy revealed the embryo of an electronic computer today that it expects will be able
to walk, talk, see, write, reproduce itself and be conscious of its existence” - NYT 1958

Turing test invented First AI winter Second AI winter
1980 2012
O @ ® @® ® @
1950 1973 1988 2019
Boom times Deep learning

revolution



Basic Neural Networks

Weights are calculated during training by defining an error/loss function.

Weights are given a random seed, then gradually nudged according to the magnitude of their contribution to
the error (the partial derivative of the weight w/r/t the error)
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Deep Learning Surges

1. Exponential increase in computing
power (GPUs, TPUs)
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5. Robotics, NLP, Vision, Search



Problems with CNNs/RNNs

1.

Vanishing or exploding gradient (float

rounded to zero)

Difficulty managing long-term

dependencies

LSTM is an improvement, but still
suffers from exploding gradients

Sequential nature prevents

parallelization
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Enter Transformers!
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.0 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature.




e Word-embeddings

e Positional encoding

e Self-attention
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Figure 1: The Transformer - model architecture.




KEncoding Words

Problem:

A word is not a number. How do we represent it to a
computer?

Naive Answer:
Assign each word a number.

Further problem:

This gives no information about a word’s meaning
(semantics). Also, the numbers get too big



“You shall know a word by the company it keeps!”

- Cambridge Linguist John Firth, 1962

Insight: meaning is relational, rather than absolute (dictionary)

We need an encoding for a word that contains information about how
it relates to other words.

The Al executed the swmt was an effective-hedge

The Al executed the swap because it had been trained to do so




Creating Word Embeddings

Solution: train a network where each word corresponds to a neuron in the input layer
(10,0004 neurons/words in vocabulary)

Each neuron in the input layer is connected to every neuron in the hidden layer (300 neurons)

After training, the learned weights (all 300) connecting a word to the hidden layer is unique to
that word and semantically meaningful

The (pre-trained) word embedding is thus a vector composed of those 300 weight values

[000...1...00]
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Positional Encoding

RNNs (including LSTMs) process tokens (words) sequentially, maintaining positional
information, but preventing parallelization

Transformers process each token (word) in a sequence in parallel, allowing for faster
operations, but this means they lose positional information. To a transformer, the following two

sentences would have the same representation:

“Who are you” (Question)
“Who you are” (Statement)

So: how can we encode positional information into each input word-embedding vector?



Naive Solution: One Hot Encoding

Swaps are Interest Rate Derivatives.

Derivatives. Fi007] ERIESH) 6316 -68.02 SIS N -6.06 W-46.72 8 64.16
LN L=

Semantics Position Semantics & Position

Only encodes absolute position - no relative position information



= sin(pos/ 100003/ deosi )
= cos(pos/ 100002/ demset

import numpy as np
import matplotlib.pyplot as plt

def getPositionEncoding(seq_len, d, n=18000):
P = np.zeros((seqg_len, d))
for k in range(seqg_len):
for i in np.arange(int(d/2)):

denominator = np.power(n, 2*i/d)
Pk, 2*i] = np.sinCk/denominator)
Plk, 2*i+1] = np.cos(k/denominator)

return P
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P = getPositionEncoding(seq_len=4, d=4, n=108)
print(P)
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Scaled Dot-Product Attention

Scaled Dot-Product ]!

Attention

Figure 1: The Transformer - model architecture.




Scaled Dot-Product Attention

QKT
vV

Attention(Q, K, V') = softmax( %4




MultiHead(Q, K, V') = Concat(heady, ..., heady, )W

i

Scaled Dot-Product Il
Attention

where head; = Attention(QW2, KWX vwY)
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Figure 1: The Transformer - model architecture.




Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, k is the kernel
size of convolutions and » the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

O(n2-d) 0(1) o(1)

Self-Attention

Recurrent O(n - d?) O(n) O(n)
Convolutional O(k-n-d?) 0(1) O(logk(n))
Self-Attention (restricted) O(r-n-d) o(1) O(n/r)




e Takeaways

e DBroader Applications

e (Colab notebook




Takeaways

Why does maximizing parallelization and
minimizing computational complexity matter?

Allows for training on larger datasets that it was
infeasible to train sequential architectures on
(Wikipedia, Common Crawl)

“For translation tasks, the Transformer can be
trained significantly faster than architectures

based on recurrent or convolutional layers. On both R J 5
WMT 2014 English-to-German and WMT 2014 - (&9, 8 -~
English-to-French translation tasks, we achieve a

new state of the art. In the former task our best Ba rd

model outperforms even all previously reported
ensembles.”



Broader Applications of Transformers

“Our survey encompasses
the identification of the top
five application domains for
transformer-based models,
namely: NLP, Computer
Vision, Multi-Modality, Al IMAGE -
Audro and Speech GENEBATURS
Processing, and Signal ; A

W f

P?"ocessmg. 7.4 Comprehensive
Survey on Applications of 7 .

Transformers for Deep Learning
Tasks’, Islam et al., June 2023

DALLE2




You can play
around with a
Transformer too!


https://colab.research.google.com/github/pinecone-io/examples/blob/master/generation/langchain/handbook/00-langchain-intro.ipynb#scrollTo=l7yubiSJhIfs

